
Formal (non)-commutative symplectic geometry

Maxim Kontsevich

Some time ago B. Feigin, V. Retakh and I had tried to understand a re-
mark of J. Stasheff [15] on open string theory and higher associative algebras
[16]. Then I found a strange construction of cohomology classes of mapping
class groups using as initial data any differential graded algebra with finite-
dimensional cohomology and a kind of Poincaré duality.

Later generalizations to the commutative and Lie cases appeared. In at-
tempts to formulate all this I have developed a kind of (non)-commutative cal-
culus. The commutative version has fruitful applications in topology of smooth
manifolds in dimensions ≥ 3. The beginnings of applications are perturbative
Chern-Simons theory (S. Axelrod and I.M. Singer [1] and myself), V. Vassiliev’s
theory of knot invariants and discriminants (see [19], new results in [2]) and
V. Drinfeld’s works on quasi-Hopf algebras (see [6]), also containing elements of
Lie calculus.

Here I present the formal aspects of the story. Theorem 1.1 is the main
motivation for my interest in non-commutative symplectic geometry. Towards
the end the exposition becomes a bit more vague and informal. Nevertheless, I
hope that I will convince the reader that non-commutative calculus has every
right to exist.

I have benefited very much from conversations with B. Feigin, V. Retakh,
J. Stasheff, R. Bott, D. Kazhdan, G. Segal, I.M. Gelfand, I. Zakharevich,
J. Cuntz, Yu. Manin, V. Ginzburg, M. Kapranov and many others.

1 Three infinite-dimensional Lie algebras

Let us define three Lie algebras. The first one, denoted by ℓn, is a certain
Lie subalgebra of derivations of the free Lie algebra generated by 2n elements
p1, . . . , pn, q1, . . . , qn.

By definition, ℓn consists of the derivations acting trivially on the element
Σ[pi, qi].

The second Lie algebra an is defined in the same way for the free associative
algebra without unit generated by p1, . . . , pn, q1, . . . , qn.

The third Lie algebra cn is the Lie algebra of polynomials

F ∈ Q[p1, . . . , pn, q1, . . . , qn]
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such that F (0) = F ′(0) = 0, with respect to the usual Poisson bracket

{F, G} =
∑

(

∂F

∂pi

∂G

∂qi
− ∂F

∂qi

∂G

∂pi

)

.

One can define cn also as the Lie algebra of derivations of a free polynomial
algebra Q[p∗, q∗] preserving the form Σ dpi ∧ dqi and the codimension one ideal
(p1, . . . , pn, q1, . . . , qn).

In Section 4 we shall give an interpretation of the algebras ℓn, an as Poisson
algebras in some versions of non-commutative geometry.

Our aim is a computation of the stable homology (with trivial coefficients) of
these Lie algebras. The spirit of the (quite simple) computations is somewhere
between Gelfand-Fuks computations (see [8] and [7]) and cyclic homology.

It is well known that all classical series of locally-transitive infinite-dimensio-
nal Lie algebras (formal vector fields, hamiltonian fields, contact fields, . . .)
have trivial or uninteresting stable (co)homology (see [11]). Our algebra hn

is a subalgebra of the algebra of hamiltonian vector fields, consisting of the
vector fields preserving a point. Applying the Shapiro lemma one can relate its
cohomology with the cohomology of the algebra of all polynomial (or formal)
hamiltonian vector fields with coefficients in the adjoint representation. We want
to mention here the recent work of I.M. Gelfand and O. Mathieu (see [9]) where
some nonstable classes for the Lie algebra of all formal hamiltonian vector fields
were constructed using cylic homology and non-commutative deformations.

If we denote by hn one of these three series of algebras, then we have a
sequence of natural embeddings h1 ⊂ h2 ⊂ · · · ⊂ h∞ where the last algebra
corresponds to the case of a countable infinite number of generators. Of course,
H∗(h∞) = lim−→H∗(hn).

Let us denote by ĥn the completion of hn with respect to the natural grading
on it. Then the continuous cohomology of ĥn is in a sense dual to H∗(hn).
More precisely, the grading on hn induces a grading on its homology, Hk(hn) =
⊕

i H
(i)
k (hn).

Hk
cont(ĥn) =

⊕

i

(H
(i)
k (hn))∗ .

For the limit algebras h∞ we have a structure of Hopf algebra on its homol-
ogy (as is usual in K-theory). The multiplication comes from the homomor-
phism h∞ ⊕ h∞ → h∞ and the comultiplication is dual to the multiplication in
cohomology.

This Hopf algebra is commutative and cocommutative. Thus H∗(h∞) is a
free polynomial algebra (in the Z/2Z-graded sense) generated by the subspace
PH∗(h∞) of primitive elements.

In all three cases we have an evident subalgebra sp(2n) ⊂ hn consisting of
linear derivations. The primitive homology of sp(2∞) is well-known:

PHk(sp(2∞),Q) =

{

Q, k = 3(mod 4)
0, k 6= 3(mod 4)

}
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Now we can state our main result:

Theorem 1.1. PHk(h∞) is equal to the direct sum of PHk(sp(∞)) for all three
cases and

(1) (for the case ℓ∞)

⊕

n≥2

H2n−2−k(OutFree(n),Q) ,

where OutFree(n) denotes the group of outer automorphisms of a free group
with n generators,

(2) (for the case a∞)

⊕

m>0,2−2g−m<0

H4g−4+2m−k(Mg,m/Σm,Q) ,

where Mg,m/Σm denotes the (coarse) moduli space of smooth complex
algebraic curves of genus g with m punctures, (the quotient space modulo
the action of the symmetric group is equal to the moduli space of curves
with unlabeled punctures),

(3) (for the case c∞)
⊕

n≥2

(Graph homology)
(n)
k

(see the definition below).

The grading on the homology groups arising from the natural grading on h∞ is
equal to (2n − 2), (4g − 4 + 2m) and (2n − 2), respectively.

2 Hamiltonian vector fields in the ordinary
sense

Before starting the proof of the third case of Theorem 1.1, we define the graph
complex. By a graph we mean a finite 1-dimensional CW-complex. Let us call
an orientation of the graph Γ a choice of orientation of the real vector space

R{edges of Γ}⊕H1(Γ,R). For n ≥ 2, k ≥ 1 denote by G
(n)
k the vector space over

Q generated by the equivalence classes of pairs (Γ, or) where Γ is a connected
nonempty graph with Euler characteristic 1−n and k vertices, such that degrees
of all vertices are greater than or equal to 3 and (or) is an orientation of Γ. We
impose the relation (Γ,−or) = −(Γ, or).

It follows that (Γ, or) = 0 for every graph Γ containing a simple loop (i.e.,
an edge attached by both ends to one vertex). The reason is that such graphs
have automorphisms reversing orientation in our sense.

It is easy to see that G
(n)
k is finite-dimensional for all k, n.
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Define a differential on the vector space G
(n)
∗ = ⊕kG

(n)
k by the formula (for

Γ without simple loops):

d(Γ, or) =
∑

e∈{edges of Γ}

(Γ/e, induced orientation) .

Here Γ/e denotes the result of the contraction of the edge e, the “induced
orientation” is the product of the natural orientation on the codimension-1
co-oriented subspace R{edges of Γ}/e ⊂ R{edges of Γ} and the orientation on
H1(Γ/e,R) ≃ H1(Γ,R).

One can easily check that d2 = 0. Hence we have an infinite sequence of

finite-dimensional complexes G
(n)
∗ . Define the graph complex without specifica-

tion as the direct sum of the complexes G
(n)
∗ .

The homology groups of graph complexes have important topological appli-
cations. In a sense they are universal characteristic classes for diffeomorphism
groups of manifolds in odd dimensions ≥ 3. The idea of this relation cornes from
perturbative Chern-Simons theory. We shall describe this somewhere later.

Proof of the third case of Theorem 1.1. Recall that our Lie algebras cn are
Z≥0-graded. Thus the standard chain complex

∧∗
(cn) is graded. We consider

the case when n is much larger than the grading degree.
It is well known that every Lie algebra acts (through the adjoint represen-

tation) trivially on its homology. The algebra sp(2n) ⊂ cn acts reductively
on

∧∗
(cn). Hence the chain complex is canonically quasi-isomorphic to the

subcomplex of sp(2n)-invariants.
The underlying vector space of the Lie algebra cn as a representation of

sp(2n) is equal to
⊕

j≥2

Sj(V ) ,

where V = Q〈p1, . . . , pn, q1, . . . , qn〉 is the defining 2n-dimensional represen-
tation of sp(2n).

Thus our chain complex as a representation of sp(2n) is equal to the sum

⊕

k2≥0,k3≥0,...

(∧k2 (S2(V ) ⊗ ∧k3(S3(V ) ⊗ . . .) .

Every summand is a space of tensors on V satisfying some symmetry condi-
tions.

We can construct (N − 1)!! = 1 · 3 · . . . · (N − 1) invariant elements in V ⊗N

for every even N . Namely, each decomposition of the finite set {1, . . . , N} into
pairs (i1, j1), . . . , (iN/2, jN/2) where i1 < j1, . . . , iN/2 < jN/2; i1 < · · · < iN/2

gives the tensor ωi1j1 . . . ωiN/2jN/2
, where ωij denotes the tensor of the standard

skew-symmetric product on V ∗.
By the Main Theorem of Invariant Theory these tensors will form a base

of the space (V ⊗N)sp(2n) and there are no nonzero invariants for odd N if
2n = dim(V ) is sufficiently large.
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Let us consider the space ∧k2 (S2(V ) ⊗ ∧k3(S3(V ) ⊗ . . . as a quotient space
of (V ⊗2)⊗k2 ⊗ (V ⊗3)⊗k3 ⊗ . . . Every pairing on the set {1, 2, . . . , 2k2 +3k3 + . . .}
gives a graph with labeled vertices and edges in the following way: we consider
{1, 2, . . . , k2 + k3 + . . .} as a set of vertices, and the set of pairs as a set of
edges. One can also provide in a canonical way these graphs with orientations.
The passing to the quotient spaces modulo the action of symmetric groups
corresponds to the consideration of graphs without labelings.

It is easy to see that we obtain a vector space analogous to our graph com-
plex with two differences: 1) we consider now graphs not necessarily empty or
connected, 2) vertices have degrees greater than or equal to 2. The differential
in the new complex can be described in the same way as for the graph complex.
The homology of the new complex is equal to the homology of c∞.

One can check that the multiplication in the stable homology can be iden-
tified with the operation of disjoint union of graphs. Thus the primitive part
arises from the subcomplex corresponding to the nonempty connected graphs.

There is a direct summand subcomplex of the last complex, consisting of
“polygons”, i.e. connected graphs with degrees of all vertices equal 2. It is easy
to see that for k 6= 3(mod 4) there exists an automorphism of k-gon reversing
the orientation. Hence we obtain the trivial sp(2∞)-part of primitive stable
homology.

Let us consider now the subcomplex consisting of connected nonempty
graphs containing at least one vertex of degree ≥ 3. We can associate with
such a graph a new graph with degrees of all vertices greater than or equal to
3. The new graph is just the old graph with removed vertices of degree 2.

One can introduce a partial order on the set of equivalence classes of graphs
by the possibility of obtaining one graph from another by a sequence of edge
contractions.

In such a way we define a certain filtration on the bigger complex by the
ordered set of graphs with degrees ≥ 3. For any such graph Γ the corresponding
graded subquotient complex is the quotient complex of tensor products over the
set of edges of Γ of some standard complexes modulo the action of the finite
group Aut (Γ).

The standard complex for an edge has dimension 1 in each degree k ≥ 0,
because there exists unique up to an isomorphism way to put k points to the
interior of the standard interval (edge). The differential in this standard complex
kills all classes in positive degrees. Hence it has only one nontrivial homology
in degree 0.

We see that the spectral sequence associated with the filtration by graphs
with degrees ≥ 3 collapses at the first term to the graph complex. It is clear
that Euler characteristic of a graph is preserved under any edge contraction.
Thus the graph complex is the direct sum of its subcomplexes over all possible
Euler characteristics. The degree in the sense of the natural grading on c2∞ of
a cycle associated with a graph Γ is equal to −2χ(Γ). �

There are a lot of nontrivial classes in the graph complex. For example,
any finite-dimensional Lie algebra g with fixed nondegenerate invariant scalar
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product on it defines a sequence of classes of graph homology in positive even
degrees.

One can choose an orthogonal base in g with respect to the scalar product.
The tensor of structure constants will be skew-symmetric 3-tensor. Each 3-
valent graph defines up to a sign a way to contract indices in some tensor power
of the tensor of structure constants. It is easy to see that we obtain a function
Φg(Γ, or) on the set of equivalence classes of 3-valent graphs with orientation.

The immediate consequence of the Jacobi identity is the fact that

∑

equiv. classes of (Γ,or)

Φg(Γ, or)

#Aut(Γ)
(Γ, or)

gives closed chains in all G
(n)
∗ . Thus one can construct some classes for every

simple Lie algebra using the Killing scalar product.

3 Moduli spaces of graphs

It will be useful for us to describe graph homology as a kind of homology of
topological spaces.

Denote by G(n) for n ≥ 2 the set of equivalence classes of pairs (Γ, met-
ric) where Γ is a nonempty connected graph with Euler characteristic equalling
(1 − n) and degrees of all vertices greater than or equal to 3, (metric) is a map
from the set of edges to the set of positive real numbers R>0. One can in-
troduce a topology on G(n) using Hausdorff distance between metrized spaces
associated in the evident way with pairs (Γ, metric). It is better to consider G(n)

not as an ordinary space, but as an orbispace (i.e. don’t forget automorphism
groups). Mention here that G(n) is a non-compact and non-smooth locally poly-
hedral space. It has a finite stratification by combinatorial types of graphs with
strata equal to some qoutient spaces of Euclidean spaces modulo actions of finite
groups.

A fundamenatal fact on the topology of G(n) is the following theorem of
M. Culler, K. Vogtmann (see [4]):

Theorem 3.1. G(n) is a classifying space of the group OutFree(n) of outer
automorphisms of a free group with n generators.

The virtual cohomological dimension of G(n) is equal to 2n−3 and the actual
dimension is equal to 3n − 3.

Any representation of the group OutFree(n) gives a local system on G(n).
We can define (co)homology, also homology with closed support and cohomology
with compact support of G(n) with coefficients in any local system.

Let us denote by ǫ the 1-dimensional local system with the fiber over (Γ,
metric) equal to ∧n(H1(Γ,Q)). A simple check shows that the chain complex
computing Hclosed

∗ (G(n), ǫ) arising from the stratification above coincides with

the shifted graph complex G
(n)
∗+n−1.
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Now we have a geometric realization of homology arising in the first and the
third cases of Theorem 1.1.

Define a ribbon graph (or a fatgraph in other terms) as a graph with fixed
cyclic orders on the sets of half-edges attached to each vertex. One can associate
an oriented surface with boundary to each ribbon graph by replacing edges
by thin oriented rectangles (ribbons) and glueing them together at all vertices
according to the chosen cyclic order.

Denote by R(g,m) the moduli space of connected ribbon graphs with metric,
such that degrees of all vertices greater than or equal to 3 and the corresponding
surface has genus g and m boundary components.

Theorem 3.2. R(g,m) is canonically isomorphic as an orbispace to Mg,m ×
Rm/Σm, (and, hence is a classifying space of some mapping class group).

This theorem follows from results of K. Strebel and/or R. Penner (see [17],
[13] or an exposition in [12]).

The space R(g,m) is a non-compact but smooth orbispace (orbifold), so there
is a rational Poincaré duality. We want to mention here that due to the factor
Rm and to the action of the symmetric group the orbifold R(g,m) is not oriented
for m > 1.

The virtual cohomological dimension of R(g,m) is equal to 4g−4+m for g ≥ 1
and to m− 3 for g = 0 (see [12]), the actual dimension is equal to 6g − 6 + 3m.

Thus vector spaces arising in Theorem 1.1 could be written as

⊕

n≥2

H2n−2−k(G(n),Q),
⊕

m>0,2−2g−m<0

H4g−4+2m−k(R(g,m),Q),
⊕

n

≥ 2

respectively.
The evident forgetful map R(g,m) → G(2g+m−1) is proper. The orientation

sheaf on R(g,m) coincides with the pullback of ǫ under this map. Hence we
obtain a sequence of linear maps

H2n−2−k(G(n),Q) →
⊕

g,m:2g+m−1=n

H4g−4+2m−k(R(g,m),Q) ≃

≃
⊕

g,m:2g+m−1=n

Hclosed
2g+m−1−k(R(g,m), ǫ) → Hclosed

k+n−1(G(n), ǫ) .

We shall see in Section 5 that the composition map is zero.

4 (Non)-commutative symplectic geometry

We shall describe here a (non)-commutative formalism surprisingly parallel to
the usual calculus of differential forms and Poisson brackets. Almost everything
will work literally at the same way in three possible worlds: Lie algebras, asso-
ciative algebras and commutative algebras. Our formalism could be extended to
the case of “Koszul dual pairs of quadratic operads” (see [10]) including Poisson
algebras and, probably, operator algebras etc.
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Let us fix a wor(l)d A ∈ {Lie, associative, commutative}.
Definitions. A formal A-supermanifold is a complete free finitely generated
Z/2Z-graded A-algebra (nonunital in the case A ∈ {Lie, associative}).

A local coordinate system on a manifold is a choice of generators of the
corresponding algebra.

A (formal) diffeomorphism between two manifolds is a continuous isomor-
phism between graded algebras.

A vector field is a continuous derivation.
Submanifold is a free quotient algebra.
The tangent space at zero is dual to the space of generators of algebra (= the

quotient space of algebra by the maximal proper ideal).

All definitions above are just general categorical nonsense.
In ordinary calculus we can consider differential forms as functions on the odd

tangent bundle to the manifold. We can define this object without difficulties
in our situation:

Definition. For supermanifold X, “the total space of the odd tangent bundle”
ΠTX is the free differential envelope of X.

For example, if X has coordinates x1, . . . , xn then ΠTX has coordinates
x1, . . . , xn, dx1, . . . , dxn. The algebra corresponding to ΠTX is Z≥0-graded by
the number of differentials. In other words, there is a canonical action of the
multiplicative group scheme Gm on ΠTX . The presence of differential on the
free differential envelope means that there is a canonical action of the odd affine

group scheme G
0|1
a on ΠTX .

Now we are coming to the delicate point: what is the notion of function?
We propose the following strange definition (where · denotes the operation in
A):

Definition. For A-algebra A the space of 0-forms F (A) is the quotient space

A ⊗ A/(subspace generated by a ⊗ b − b ⊗ a and a ⊗ (b · c) − (a · b) ⊗ c) .

Of course, in the supercase one has to make appropriate sign corrections.
Functor F (A) coincides with A2 in the commutative case, with A2/[A, A] in

the associative case (for unital A, F (A)∗ is equal to the space of traces on A),
and with the functor considered by Drinfeld (see [6]) for the Lie case.

By functoriality we obtain the action of Gm and G
0|1
a on F (ΠTX) for any

X . In other words, F (ΠTX) is a Z≥0-graded complex. We shall call it the de
Rham complex of the manifold X .

Notations. F i(X) for i ≥ 0 is the i-th homogeneous comportent of F (ΠTX),
d is the differential F i(X) → F i+1(X).

It is clear that F 0(X) coincides with the functor F applied to the algebra
corresponding to the manifold.
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One can define for a vector field ξ on a manifold two vector fields Lξ, iξ on
ΠTX by formulas

Lξ(a) = ξ(a) , Lξ(da) = d(ξ(a)) , iξ(a) = 0 , iξ(da) = ξ(a)

for every a ∈ A. The following commutator relations hold:

Lξ = iξd + diξ , iξiη + iηiξ = 0 , [Lξ, iη] = i[ξ,η] , [Lξ, Lη] = L[ξ,η] .

By functoriality we have analogous operations on the de Rham complex.
Using these formulas we can prove easily that for local manifolds the de

Rham complex is exact. It follows from the fact that Le = [ie, d] is an invertible
operator on F ∗(X) where e denotes the Euler vector field x1

∂
∂x1

+ · · · + xn
∂

∂xn

on a manifold with coordinates x1, . . . , xn.
The mini-theory developed above works well for many other functors (alge-

bras) → (vector spaces) instead of F (A). The advantage of our definition is the
existence of symplectic theory.

It follows easily from the definitions that any 2-form on a manifold defined
a skew-symmetric bilinear form on the tangent space at 0 (through the first
coefficient in its Taylor expansion).

Definition. Symplectic supermanifold is a pair (X, ω) where ω is closed even
2-form on X with nondegenerate restriction to T0X.

One can check that for any nondegenerate 2-form ω the operator ξ → iξω
is an isomorphism between the space of vector fields and the space of 1-forms.
Thus by usual arguments vector fields preserving symplectic structure are in
one-to-one correspondence with 0-forms. In fact, the Lie algebra of hamiltonian
vector fields depends (up to inner automorphism) only on the dimension of the
symplectic manifold.

Theorem 4.1. (Darboux theorem) A symplectic manifold is isomorphic to the
flat manifold, i.e. with

ω =
∑

cαβdtα ⊗ dtβ .

We shall not use here this theorem, so the proof will be omitted.
For the case of associative or Lie manifolds there exists a simple description

of closed 2-forms:

Theorem 4.2. For (associative or Lie) free algebra A there exists a canonical
isomorphism F 2

closed(A) ≃ [A, A].

Proof. First of all, we define a map t : F 1(A) → [A, A] by the formula t(a⊗db) =
[a, b]. It is clear that this map is onto and it vanishes on dF 0(A). Thus for the
associative case we obtain the short sequence

A → A2/[A, A]
d−→ F 1(A)

t−→ [A, A] → 0
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exact everywhere, but the middle term. If we choose coordinates then we obtain
a grading on all terms of this sequence. Simple dimension count shows that Euler
characteristics of all graded components are zero (we know generating function
of F 1(A) because there exists an isomorphism F 1(A) ≃ {derivations of A}).
Thus the sequence above is exact and coincides with the exact sequence

0 → F 0(A)
d−→ F 1(A)

d−→ F 2
closed(A) → 0 .

Analogous but more lengthy arguments work for Lie algebras too. (For another
approach see [6]). �

5 Sketch of the proof of Theorem 1.1 for the
associative and the Lie cases

Now we can combine all facts together.
It follows from Theorem 4.2 that algebras ℓn, an are algebras of hamiltonian

vector fields on flat symplectic manifolds in non-commutative geometries. Thus
they are canonically equivalent as vector spaces to 0-forms.

In the associative case the vector space of 0-forms on a flat manifold with
the cotangent space V at zero as GL(V )-module is equal to

⊕

n≥2

(V ⊗n)Z/nZ

where cyclic group Z/nZ acts by permutations of factors in V ⊗n. The same
arguments as in the commutative case lead to the ribbon version of the graph
complex. By Theorem 3.2 we obtain at the end all cohomology groups of all
moduli spaces of complex curves with unlabeled punctures.

In the case of Lie algebras the situation is a bit more complicated. We say
(without proof) that the space of 0-forms is now equal to

⊕

n≥2

(V ⊗n ⊗ Ln)Σn

where Ln is a certain (n−2)!-dimensional representation of the symmetric group
Σn. Again using the same strategy as in Section 2 we obtain the Lie version of
the graph complex. As the vector space it will be the direct sum over equivalence
classes of graphs of some vector spaces. The vector space associated with graph
Γ will be the subspace of Aut(Γ)-invariants in the tensor product of natural
(degree of vertex −2)!-dimensional vector spaces over all vertices twisted with
the 1-dimensional local system ǫ.

On the other hand, we can construct a finite cell-complex homotopy equiv-
alent to BOutFree(n) passing from the natural stratification of G(n) to its bari-
centric subdivision. The corresponding cochain complex carries some filtration
by graphs (by the minimal graph corresponding to strata attached to the cell).
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Computations show that the spectral sequence associated with this filtration
collapses at the second term to the Lie version of graph complex. �

Two evident functors

{commutative algebras} → {associative algebras} → {Lie algebras}

lift to correspondences between 3 types of calculus, in particular, to homomor-
phisms of Lie algebras

c∞ → a∞ → ℓ∞ .

The composite map goes through sub- and quotient algebra sp(2∞), so it is zero
on the nontrivial part of primitive homology. One can identify arising maps with
geometrie maps from Section 3.

The entire story above has an odd analogue. One has to consider superalge-
bras and odd symplectic structures. Then the stable homology will be described
in the same way but with the twisted by ǫ coefficients.

The odd version of (commutative) graph homology plays the same role for
smooth even-dimensional manifolds (dim ≥ 4) as the even version for odd di-
mensions.

6 Poisson brackets: Formulas and interpreta-

tions

In all 3 worlds the space of 1-forms on the flat manifold with coordinates
x1, . . . , xn can be identified with the direct sum of n copies of the corresponding
free algebra A:

(a1, . . . , an) ↔
∑

ai ⊗ dxi .

Thus we can define linear operators ∂
∂xi

: F (A) → A by formula dH =
∑

∂H
∂xi

⊗
dxi.

In the associative case 0-forms are linear combinations of cyclic words (of
length ≥ 2) in alphabet x1, . . . , xn. For example,

∂(xxyxz)

∂x
= xyxz + yxzx + zxxy ,

∂(xxyxz)

∂y
= xzxx ,

where xxyxz is considered as a cyclic word.
The following basic identity holds in all 3 cases:

∑

[

xi,
∂H

∂xi

]

= 0 .

It is just nothing in the commutative world. In the associative world one can
prove this identity immediately using the description of F 0 above. The Lie case
follows from the associative case by embeddings of free Lie algebras into free
associative algebras.
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There are universal formulas for Poisson brackets:

{G, H} =
∑

(

∂G

∂pi
⊗ ∂H

∂qi
− ∂G

∂qi
⊗ ∂H

∂pi

)

,

hamiltonian vector field, corresponding to H is ṗi = ∂H
∂qi

, q̇i = ∂H
∂pi

. The invari-

ance of Σ[pi, qi] is equivalent to the identity above.
V. Drinfeld in [6] used another Poisson bracket on F (A) (for the Lie case):

{G, H} =
n

∑

i=1

xi ⊗
[

∂G

∂xi
,
∂H

∂xi

]

,

H 7→ vector field ẋi =

[

xi,
∂H

∂xi

]

.

Later we shall give an interpretation of this bracket as a Kirillov bracket on the
dual space to the “Lie” algebra C ⊕ · · · ⊕ C (n summands). In the Lie world
“Lie” algebras are commutative algebras. As an abstract Lie algebra F (A) with
this bracket is a trivial central extension by 〈x1 ⊗ x1, . . . , xn ⊗ xn〉 of the Lie
algebra of derivations D of the free Lie algebra generated by xi such that

∀ i ∃ yi such that D(xi) = [xi, yi] , D
(

∑

xi

)

= 0 .

Recall, that

(1) Teichmüller group Tg,1 is the group of automorphisms of the free group
generated by {p1, . . . , pg, q1, . . . , qg} preserving the element Πpiqip

−1
i q−1

i ,

(2) pure braid group with n strings is the group of automorphisms of the free
group generated by {x1, . . . , xn} preserving conjugacy classes of xi and
the element x1x2 . . . xn.

Thus we see that in the Lie world Poisson algebra is an analogue of the
Teichmüller group for flat symplectic manifolds, and an analogue of the pure
braid group for Kirillov brackets.

Also, if K is a subfield of C containing all roots of unity and C is a smooth
algebraic curve defined over K of genus g with one puncture or of genus 0 with
n+1 punctures then the Galois group Gal (K̄/K) acts on the ℓ-adic completion
of the fundamental group of C(C) through the ℓ-adic pro-nilpotent group with
the corresponding Poisson algebra as the Lie algebra (ℓ is an arbitrary prime).

7 How big are stable homologies?

We collect here some attempts to understand the “size” of stable homologies
of Poisson algebras. The situation is not clear because different approachs give
contradictory hints.
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7.1 Explicit constructions of stable classes

There is a generalization of the construction mentioned at the end of Section 2
for the commutative case.

Let us start from some general remark. If G is a Lie superalgebra and
D ∈ G1 is an odd element such that [D, D] = 0 then one can associate with
D for any k ≥ 0 some homology class of G in degree k. The reason is that D
produces a homomorphism from 0|1-dimensional commutative algebra A0|1 to
G and dimHk(A0|1) = (1|0) for k even and (0|1) for k odd.

We can construct superanalogs of algebras ℓn, an, cn starting from flat sym-
plectic supermanifolds in the sense of the previous section. One can see that the
stable homology are the same as in the pure even case because Main Theorem
of Invariant Theory works with appropriate corrections also in the supercase.

Thus any odd Hamiltonian with vanishing Poisson bracket with itself pro-
duces stable classes in even degrees. For example, a finite-dimensional Lie alge-
bra g with a nondegenerate scalar product on it gives: 1) a pure odd symplectic
(in ordinary super-commutative sense) manifold X = Πg, 2) an odd cubic poly-
nomial H on X arising from the structure constants. Jacobi identity implies
[H, H ] = 0.

Formally the same construction works in all three cases. Define duality
between types of algebras as

Lie ↔ commutative , associative ↔ associative .

For any finite-dimensional A-algebra V with nondegenerate invariant scalar
product on it, the odd vector space ΠV considered as a manifold of the dual
type carries a symplectic structure and an odd hamiltonian vector field with
square equal to 0.

If we restrict ourselves to finite-dimensional simple algebras over the field of
complex numbers, then we obtain many examples (Dynkin diagrams) for the
case of Lie algebras, essentially one example (matrix algebra) for the associative
case, and no nontrivial examples in the commutative case (one-dimensional
commutative algebra gives zero classes in nontrivial part of PH∗(ℓ∞)).

We have tried to deform these examples. It turns out that there are many
new classes in the case c∞, some classes for a∞ and no classes for ℓ∞.

The basic example for the associative case is the following: symplectic
manifold X is 0|1-dimensional with the coordinate x and symplectic structure
ω = dx ⊗ dx, odd hamiltonian H is arbitrary linear combination of x ⊗ x2k,
k ≥ 0. One can prove that the linear span of all stable classes via isomorphism
of Theorem 1.1 is equal to the space of all polynomials in Morita-Miller-Mumford
classes on moduli spaces of curves.

Thus the conclusion from this approach is that the nontrivial primitive part
of stable homology of Poisson algebras looks big for the commutative case,
moderate for the associative case and small or zero for the Lie case.
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7.2 Euler characteristics of (generalized) graph complexes

The absolute value of Euler characteristic of a finite complex of vector spaces
gives an estimate from below for the total dimension of its homology. It is much
easier to compute Euler characteristics for our generalized graph complexes in
an “orbifold” sense (see [3]). The last adjective means that we count each graph
Γ with the weight equal to 1/#Aut (Γ). It is reasonable to expect that the
“most” part of graphs has no nontrivial automorphisms.

The generating function

∑

k≥1

tk×(orbifold Euler characteristic of the subcomplex of graphs with χ = −k)

in all cases is an asymptotic expansion for t → 0 of

log

(

∫

near 0 exp(−F (x)/t)dx√
2πt

)

where F (x) is a series in x equal to

(1)
∑

n≥2

xn

n(n−1) for the Lie case,

(2)
∑

n≥2

xn

n for the associative case,

(3)
∑

n≥2

xn

n! for the commutative case.

These formulas follows from Feynman rules. The second and the third inte-
gral coincide! (It is a simple exercise in calculus.)

Thus we obtain quite big but the same numbers (Bernoulli numbers) for the
second and the third cases and some bigger numbers for the first (Lie) case. It
is absolutely different from the previous picture.

7.3 Conjecture

Computations show that dim(H2(c∞)) = 1. The unique up to a factor class
corresponds to the ordinary “quantization”, i.e. deformation of the Lie algebra
structure on ordinary hamiltonian vector fields. (Recall that by the Shapiro
lemma H∗(cn) is more or less equal to the deformation cohomology of hamil-
tonian fields). The graph representing this class has 2 vertices and 3 edges
connecting both vertices.

We conjecture that for all 3 cases (or 6, if one takes into account also odd
versions) stable homology of Poisson algebras are finite-dimensional.

This conjecture has a non-trivial consequence that the difference between the
virtual and the actual rational Euler characteristic for moduli spaces of open
curves tends to +∞ when genus tends to +∞.
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7.4 Poisson world

As we mentioned before, the whole story can be told for some more general
classes of algebras with a set of basic binary operations and quadratic relations
between these operations (like Jacobi identity or associativity). One example
of such situation is the case of Poisson algebras, i.e. vector spaces V with
structures of commutative and Lie algebra on it satisfying condition

[a, bc] = b[a, c] + c[a, b] .

As in Section 4 one can define “Poisson algebras in the Poisson world”.
Poisson world is a degenerated relative of the associative world. For ex-

ample, like in the associative case, there are n! linearly independent polylinear
monomials in n indeterminates x1, . . . , xn for any n ≥ 1.

On the other hand, generalized graph complex for the Poisson world contains
as a direct summands graph complexes for commutative and Lie cases. We
expect that better understanding of the underlying geometry of Poisson graph
complexes gives more clear picture in three classical cases.

8 Duality

Here we shall be very concise.
First of all, any differential graded A-algebra V defines a manifold ΠV ∗ in

the dual world with the action of A0|1 (ΠV ∗ could be infinite-dimensional). It
is just the usual (co)bar construction. Applying the bar construction twice we
obtain a differential graded algebra quasi-isomorphic to the initial one. Hence
suitably defined homotopy categories for dual types of algebras are dual (see
[14]).

Define strong homotopy A-algebra as a manifold in the dual world with the
action of A0|1. Homotopy theories of differential graded algebras and strong
homotopy algebras coincide. The advantage of strong homotopy algebras is
that their homotopy types are in one-to-one correspondence with equivalence
types of so called minimal strong homotopy algebras, i.e. manifolds with odd
vector fields with square equal zero and with the vanishing first Taylor coefficient
at zero point (see [18]).

Another quite different aspect of duality is a kind of Lie theory. On the
tensor product V ⊗ U of A-algebra V and Adual-algebra U there is a canonical
structure of Lie algebra. Category of Adual-algebras is (more or less) equivalent
to the category of functors

{A-algebras} → {Lie algebras}

preserving limits. At the moment we don’t understand why the homotopy theory
gives the same duality as the Lie theory.

In general, we expect 4 constructions. If V is an Adual-algebra, then as
formal flat A-manifolds
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(1) V is a group-like object in the category of A-manifolds (Lie theory),

(2) there is an odd vector field of homogeneity degree 1 with the square equal
to 0 on ΠV (bar construction),

(3) there is an even Poisson bracket of homogeneity degree 1 on V ∗ (Kirillov
bracket),

(4) there is an odd Poisson bracket of homogeneity degree 1 on ΠV ∗ (odd
Kirillov bracket).

In the last three cases Taylor coefficients of corresponding structures are
structure constants of algebra V . To construct group law we use a) the structure
of Lie algebra on V ⊗ U for arbitrary A-algebra U and b) Campbell-Dynkin-
Hausdorff formula.

9 Towards a global geometry

J. Cuntz and D. Quillen ([5]), following A. Grothendieck, define smooth non-
commutative associative algebra (with or without unit) as an algebra having
the lifting property with respect to the nilpotent extensions. They proved that
this property is equivalent to the existence of “connection with zero torsion on
the tangent bundle”. The last notion means the following: starting from an
algebra A one can construct a new algebra TA adding even symbols da, a ∈ A
satisfying the Leibniz rule d(a · b) = a · db + da · b. There is a Z≥0-grading on
TA by the number of differentials. Connection with zero torsion on the tangent
bundle is a derivation (= vector field) D of TA of homogeneity degree 1 such
that Da = da for a ∈ A.

It seems that both definitions of smoothness are equivalent in other cases.
It follows from results of J. Cuntz and D. Quillen that for smooth algebras

co-homology of the de Rham complex (which is Karoubi-de Rham complex in
the associative unital case) gives the “right” cohomology, i.e. cyclic homology
of algebras.

We propose the following picture:
Let V be a finite-dimensional A-algebra. Then V defines a functor

{finitely generated A-algebras} → {affine schemes over C}

by associating with A-algebra A the scheme A(V ) of its homomorphisms to V .
We expect that if A is smooth then A(V ) is smooth, vector fields on A go to
vector fields on A(V ), and if V carries a nondegenerate invariant scalar product
then differential forms for A go to differential forms on A(V ) and symplectic
structures go to symplectic structures.

Examples.

Gm = 〈x, y : xy = 1〉 is smooth unital associative algebra. Its de Rham
cohomologies are 1-dimensional in degrees 1, 3, 5, . . . and zero in even degrees
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(compare with the cohomology of the representation space Gm(MatN (C)) =
GL(N,C)).

P = 〈p : p2 = p〉 is 1-dimensional smooth nonunital associative algebra.
And what is more, this non-commutative manifold is symplectic. De Rham
cohomologies are 1-dimensional in degrees 0, 2, 4, . . . and zero in odd degrees.
Representation spaces are symplectic manifolds homotopy equivalent to the dis-
joint union of complex Grassmanians.
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